Evaluation and error analysis: Kalman gain regularization versus covariance regularization
نویسندگان
چکیده
Ensemble size is critical to the efficiency and performance of the ensemble Kalman filter, but when the ensemble size is small, the Kalman gain generally cannot be well estimated. To reduce the negative effect of spurious correlations, a regularization process applied on either the covariance or the Kalman gain seems to be necessary. In this paper, we evaluate and compare the estimation errors when two regularization methods including the distance-dependent localization and the bootstrap-based screening are applied on the covariance and on the Kalman gain. The investigations were carried out through two examples: 1D linear problem without dynamics but for which the true Kalman gain can be computed and a 2D highly nonlinear reservoir fluid flow problem. The investigation resulted in three primary conclusions. First, if localizations of two covariance matrices are not consistent, the estimate of the Kalman gain will generally be poor at the observation location. The consistency condition can be difficult to apply for nonlocal observations. Second, the estimate of the Kalman gain that results from covariance regularization is generally subject to greater errors than the estimate of the Kalman gain that results from Kalman gain regularization. Third, in terms of removing spurious correlations in the estimation of spatially correlated variables, the performance of screenY. Zhang (B) Chevron Energy Technology Company, 1500 Louisiana St., Houston, TX 77002, USA e-mail: [email protected], [email protected] D. S. Oliver Uni Research, Centre for Integrated Petroleum Research, P.O. Box 7800, 5007 Bergen, Norway e-mail: [email protected] ing Kalman gain is comparable as the performance of localization methods (applied on either covariance or Kalman gain), but screening Kalman gain outperforms the localization methods in terms of generality for application, as the screening method can be used for estimating both spatially correlated and uncorrelated variables, and moreover, no assumption about the prior covariance is required for the screening method.
منابع مشابه
Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملA Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملRegularized MMSE multiuser detection using covariance matrix tapering
The linear minimum mean-squared error (MMSE) detector for direct-sequence code-division multiple-access (DSCDMA) systems relies on the inverse of the covariance matrix of the received signal. In multiuser environments, when few samples are available for the covariance estimation, the matrix illconditioning may produce large performance degradation. In order to cope with this effect, we propose ...
متن کاملCS 545 : Assignment 8 Dan
Mixture of Probabilistic Principal Component Analyzers (MPPCA) is a seminal work in Machine Learning in that it was the first to use PCA to perform clustering and local dimensionality reduction. MPPCA is based upon the mixture of Factor Analyzers (MFA) which is similar to MPPCA except is uses Factor Analysis to estimate the covariance matrix. This algorithm is of interest to me because it is re...
متن کاملCovariance Regularization for Supervised Learning in High Dimensions
This paper studies the effect of covariance regularization for classification of high-dimensional data. This is done by fitting a mixture of Gaussians with a regularized covariance matrix to each class. Three data sets are chosen to suggest the results are applicable to any domain with high-dimensional data. The regularization needs of the data when pre-processed using the dimensionality reduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011